

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

IV Year - I Semester	L	T	P	C
	3	0	0	3
				-

MICROWAVE and OPTICAL COMMUNICATION ENGINEERING

Course Objectives:

The student will able to

- Understand fundamental characteristics of waveguides and Micro strip lines through electromagnetic fieldanalysis.
- Understand the basic properties of waveguide components and Ferrite materials composition
- Understand the function, design, and integration of the major microwave components oscillators, poweramplifier.
- Understand a Microwave test bench setup formeasurements.

UNIT I

MICROWAVE TUBES (Qualitative treatment only): Cavities, Re-entrant Cavities, Two Cavity Klystrons-Structure, Velocity Modulation and Bunching process, Reflex Klystrons-Structure, principle of working.

HELIX TWTS: Significance, Types and Characteristics of Slow Wave Structures; Structure of TWT.

M-TYPE TUBES

Introduction, Cross-field effects, Magnetrons – 8-Cavity Cylindrical Travelling Wave Magnetron.

MICROWAVE SOLID STATE DEVICES: Introduction, Classification, Applications. TEDs – Introduction, Gunn Diode – Principle, RWH Theory, Characteristics, LSA Mode of operation

UNIT II

WAVEGUIDE COMPONENTS AND APPLICATIONS- I (Qualitative treatment only): Waveguide Attenuators – Resistive Card, Rotary Vane types, Scattering matrix parameters: Definition, Properties, Salient Features -S- parameters of two port, three port, four port networks. 2 Hole, Bethe Holetypes.

UNIT III Over view of optical fiber communication, Total Internal Reflection, Numerical Aperture, Graded index fibers, Cut off wavelength.

OPTICAL FIBER CONNECTORS-Connector types, Single mode fiber connectors, Connector return loss, Fiber Splicing- Splicing techniques, Splicing single mode fibers, Multimode fiber joints, single mode fiber joints.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNITIV

OPTICAL SOURCES and Detectors: Qualitative treatment, Structures, Materials, Quantum efficiency, Physical principles and comparison of: Optical sources and detectors, Related problems.

Optical system design- Point to point links – Component Choice and considerations, Link power budget, Line coding in Optical links, WDM, Necessity, Principles, Eye pattern.

UNIT -V: MEASUREMENTS:

- **a. MICROWAVE MEASUREMENTS:** Description Of Microwave Bench- Different Blocks, Microwave Power Measurement- Bolometer Method. Measurement of Attenuation by Reflection Method, VSWR, ImpedanceMeasurement
- b. OPTICAL MEASUREMENTS: OTDR, Attenuation, DetectorCharacteristics

TEXT BOOKS:

- 1. Microwave Devices and Circuits Samuel Y. Liao, PHI, 3rdEdition,1994.
- 2. Foundations for Microwave Engineering R.E. Collin, IEEE Press, John Wiley, 2nd Edition, 2002.
- 3. Optical Fiber Communications Gerd Keiser, Mc Graw-Hill International edition,3rd Edition,2000.

REFERENCES:

- 1. Microwave Engineering- Annapurna Das and Sisir K.Das, Mc Graw HillEducation, 3rdEdition, 2014.
- 2. Microwave Engineering G S N Raju , I K International Publishing House Pvt. Limited, 2008.
- 3. Fiber Optic Communication Systems Govind P. Agarwal , John Wiley, 3rd Ediition, 2004.

Course Outcomes: After going through this course the student will be able to

- Design different modes in waveguidestructures
- Calculate S-matrix for various waveguide components and splitting the microwave energy in a desireddirection
- Distinguish between Microwave tubes and Solid State Devices, calculation of efficiency devices.
- Measure various microwave parameters using a Microwave testbench